US Department of Energy and Idaho National Laboratory PHEV Activity Overview

Ohio Rural Electric Cooperatives 2008 Fall Marketing, Member Services and Communication Conference

Columbus, OH November 6, 2008

John Smart

INL/CON-08-15046

US Department of Energy Vehicle Technologies Program PHEV Research and Development Areas

System / component level activities include:

- Energy storage
 - Advanced battery cells, packs and full systems
 - Cost, life, low temperature performance, tolerance abuse and safety
 - Monitoring of all technologies (capacitors, flywheels, etc)
- Power electronics and electric Motors
 - Cost, size, thermal control, integrated systems development
- Definition of PHEV component requirements

Li-ion Cells Photo: Saft



US Department of Energy Vehicle Technologies Program PHEV Research and Development Areas

- Vehicle Technology Analysis and Evaluation activities include:
- Modeling and Simulation
 - Reference Vehicle Definition
 - Analytical Tool Development
 - Technology Verification
- Integration and Validation
 - Hardware-in-the-Loop System Integration
 - Technology Validation
- Laboratory and Field Evaluation
 - Vehicle / Component Testing
 - Model Validation

US Department of Energy PHEV Testing Partners

Cooperative testing agreements provide access to non-DOE owned PHEVs operating in demonstration fleets. Partners include:

- New York State Energy Research Development Agency (NYSERDA)
- City of Seattle, King County, Port of Seattle, Puget Sound Clean Air Agency
- Tacoma Power
- State of Hawaii
- National Rural Electric Cooperative Association
- University of California-Davis
- PHEV conversion companies
 - Hymotion
 - EnergyCS
 - others

US Department of Energy PHEV Technology Acceleration and Deployment Activity (TADA)

- Funding opportunity for vehicle manufacturers to put prototype PHEVs in field over next three years
- Proposals selected for negotiation from:
 - General Motors
 - Ford Motor Co.
 - Chrysler / General Electric

Idaho National Laboratory

- Eastern Idaho based U.S. Department of Energy (DOE) multi-program laboratory
- 890 square mile site with 3,600 staff
- Support DOE's strategic goal:
 - Increase U.S. energy security and reduce the nation's dependence on foreign oil
- The INL has managed DOE's Advanced Vehicle Test Activity since the late 1980's

Advanced Vehicle Testing Activity (AVTA)

- Part of the U.S. Department of Energy's Vehicle Technologies Program
- INL and Electric Transportation Engineering Corporation (ETEC) conduct the AVTA's light-duty vehicle testing, with Argonne National Laboratory performing dynamometer testing

AVTA Goals

- Determine actual petroleum displacement and overall operating cost of advanced technology vehicles
- Provide benchmark data to industry and government research and development programs
- Assist consumers in making informed vehicle purchase, usage, and operating decisions

AVTA Testing History

- Plug-in hybrid electric vehicles
 - 9 models, ~70 vehicles in fleets
- Hybrid electric vehicles
 - 14 models, 4+ million test miles
- Hydrogen ICE (internal combustion engine) vehicles
 - 6 models, 400,000 test miles
- Full-size electric vehicles
 - 40 EV models, 5+ million test miles
- Neighborhood electric vehicles
 - 16 models, 200,000 test miles
- Urban electric vehicles
 - 3 models, 1 million test miles

PHEV Models Tested by AVTA

Nine different PHEV models are in or have completed various testing / demonstration activities

- Hymotion Prius
- EnergyCS Prius
- Hymotion Escape
- HybridsPlus Escape
- HybridsPlus Prius
- Manzanita lead acid Prius
- Electrovaya Escape
- Ford E85 Escape
- Renault Kangoo
- Daimler Sprinter expected to start testing in Spring 2009

PHEV Testing Objectives

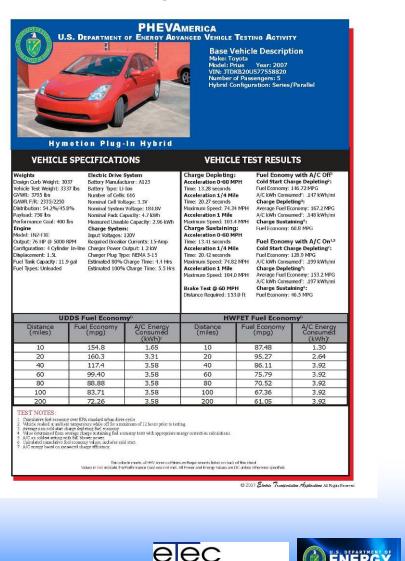
Perform independent testing of PHEVs using:

- Baseline performance testing
 - closed test tracks and dynamometers
- Accelerated on-road testing
 - dedicated drivers operating on defined routes
- Fleet testing
 - monitor everyday uncontrolled use with onboard data loggers
- Lab and field off-board charging / grid interaction studies

PHEV Testing Objectives

Study and document

- How the vehicles are driven
- How the vehicles are charged
- The effect on
 - Gasoline and electricity fuel use
 - Battery life
 - Facility / grid demand and energy profiles
- Charging infrastructure requirements
- Cost / benefit of fast charging, vehicle-to-grid charging
- Overall PHEV life-cycle costs

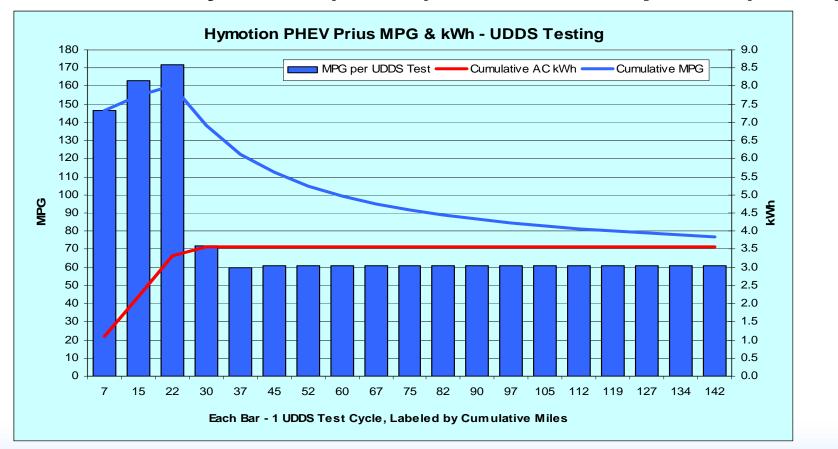


PHEV Baseline Performance Testing

These and other test results at http://avt.inl.gov

	S. Department		ANCED VEHICLE Base Ve Make: Toy Model: Pri VIN: JTDK Number o	ehicle Descript _{/ota}	ion		
	SPECIFICATIO		VEHICLI	E TEST RESUL	TS		
Weights Electri Chive System Design Curb Weight: 3100 Battery Type: Li-lon Vehick Test Weight: 3100 Battery Type: Li-lon GWWE: 3795 bs Number of Cells: 2376 Dehitotion: 51-247-94/545% Nominal Cell Vollage: 23.04 Dehitotion: 61-247-94/54% Nominal Pack Capacity: 1.0 kWh Performance Coal: 400 hs Desared Usable Capacity: 1.6 kWh Dedof: IN2-FPE Ipput Vollages: 120V Output: 76 HP @ 5000 RPM Required Brooker Curents: 15-Amp Configuration: -4 (Crighter Thine Charge Power Output: 1.2 kW Charge Power Output: 1.2 kW Deplocement: 1.3 Charge Power Output: 1.2 kW Deplocement: 1.9 Estimated 30% Charge Time: 6.5 1/s Fuel Tark Capacity: 1.1 g all Estimated 100% Charge Time: 8 Hrs			Charge Depleting: Acceleration 0-60 MPH Time: 12.95 seconds Acceleration 1.4 Mile Time: 20.09 seconds Acceleration 2.14 Mile Time: 20.09 seconds Harinum Speed: 75.7 MPH Acceleration 2.160 kWh/ml Charge Depleting': Acceleration 2.160 kWh/ml Charge Sustaining: Charge Sustaining: Charge Sustaining: Charge Depleting': Acceleration 2.46 Mile Acceleration 2.46 Mile Time: 19.89 seconds Acceleration 1.4 Mile Time: 19.89 seconds Acceleration 2.57 MPH Acceleration 1.4 Mile Time: 19.89 seconds Acceleration 1.4 Mile Time: 19.89 seconds Acceleration 1.4 Mile Time: 19.89 seconds Acceleration 1.4 Mile Charge Depleting': Acceleration 1.5 Mile Charge Depleting': Acceleration 1.4 Mile Charge De				
U	DDS Fuel Econom	N ₀	HWFET Fuel Economy				
Distance (miles)	Fuel Economy (mpg)	A/C Energy Consumed (kWh) ²	Distance (miles)	Fuel Economy (mpg)	A/C Energy Consumed (kWh)		
10	118.0	1.83	10	106.6	1.77		
20	137.6	3.65	20	116.4	3.45		
40	124.7	5.52	40	99.9	5.46		
60	105.9	5.65	60	86.7	5.84		
80	94.7	5.65	80	79.5	5.93		
100	89.18	5.65	100	75.2	5.93		
200	77.9	5.65	200	66.6	5.93		
	y over BPA standard urban drive at temperature while off for a min- burge depleting fiel scancery, wersge charge statisting fiel so ith full blower power, all concerny values, includes col- asured charge efficiency.		ting. nergy correction calculations,				
7. A/C energy based on me	This yea	cle meets all HEV America Minin	rum Requirements listed on back o	f this sheet			
 A/C energy based on me 	This yea Values in red indicate the	icle meets all HEV America Minih Performance Goal was not met.	rum Requirements listed on back o All Power and Energy Velues are D	f this sheet C unless otherwise specified.			

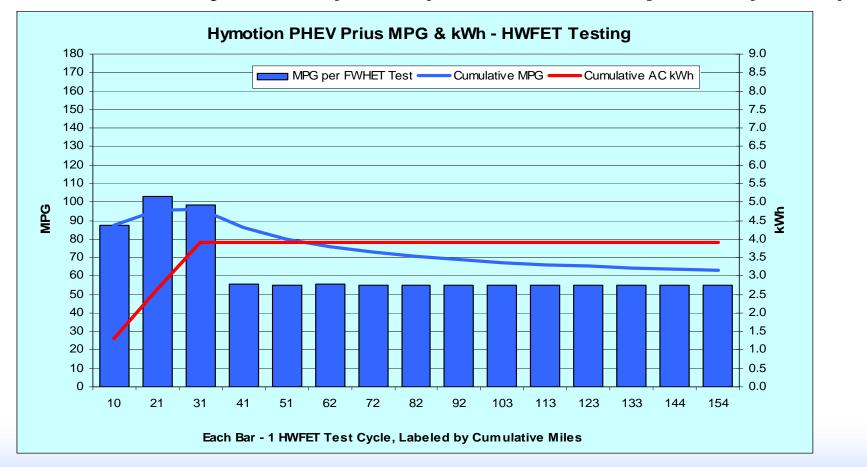
Idaho National Laboratory



transportation engineering corporatio

Toyota Prius with Hymotion PHEV conversion – EPA City Test

• 5 kWh A123Systems (Li-ion) v1 and Prius packs (NiMH)

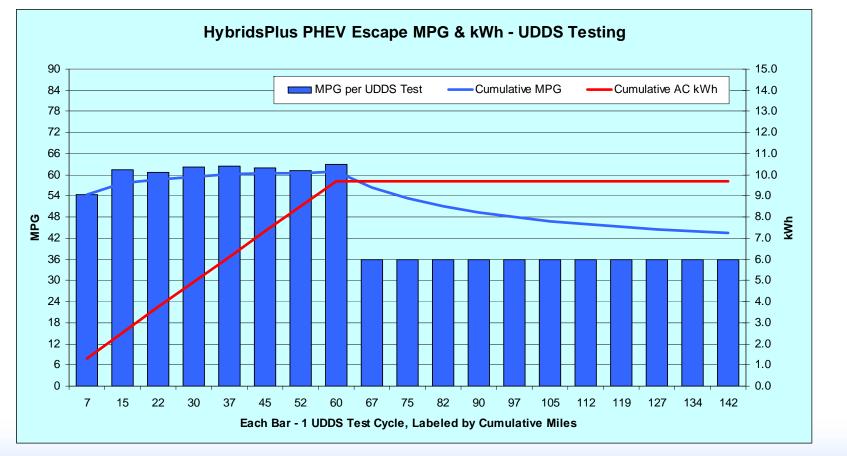


Toyota Prius with Hymotion PHEV conversion – EPA Highway Test

• 5 kWh A123Systems (Li-ion) v1 and Prius packs (NiMH)

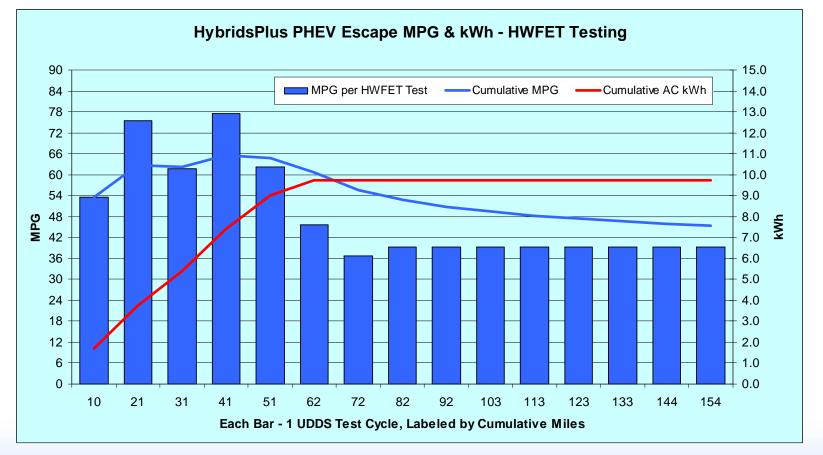
Hymotion Prius – On-road Accelerated Testing

Cycle	Urban	Highway	Charge	Reps	Total	Electricity	Gas	oline
(mi)	(10 mi)	(10 mi)	(hr)	(N)	(mi)	AC kWh	Gal	MPG
10	1	0	4	60	600	136.33	4.81	127.2
20	1	1	8	30	600	122.02	5.37	115.9
40	4	0	12	15	600	84.10	6.05	101.1
40	2	2	12	15	600	87.22	5.78	106.9
40	0	4	12	15	600	79.82	8.54	73.1
60	2	4	12	10	600	55.33	8.98	68.9
80	2	6	12	8	640	43.99	11.36	58.3
100	2	8	12	6	600	35.98	8.43	73.2
200	2	18	12	3	600	15.0	11.02	54.8
Total	2540	3100	1404	167	5,440	Weighted	Average	79.5

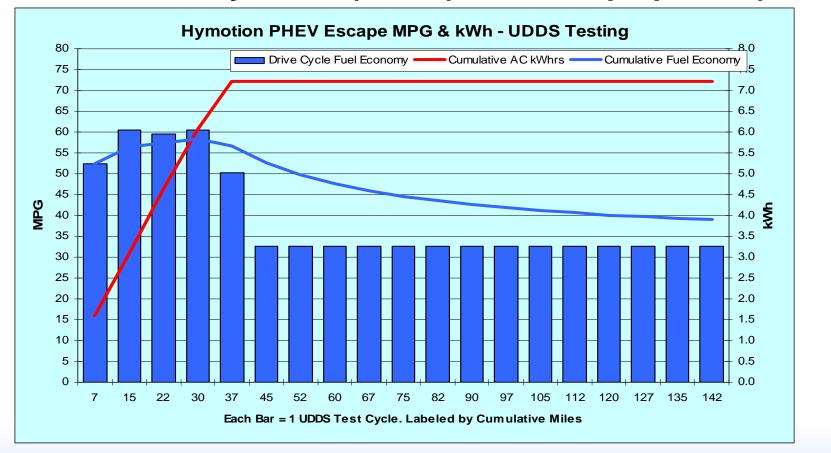

Each total distance slightly greater than 600 and 640 miles. HEV version = 44 mpg

Ford Escape Hybrid with HybridsPlus PHEV conversion – EPA City Test

• 10 kWh A123Systems (Li-ion)

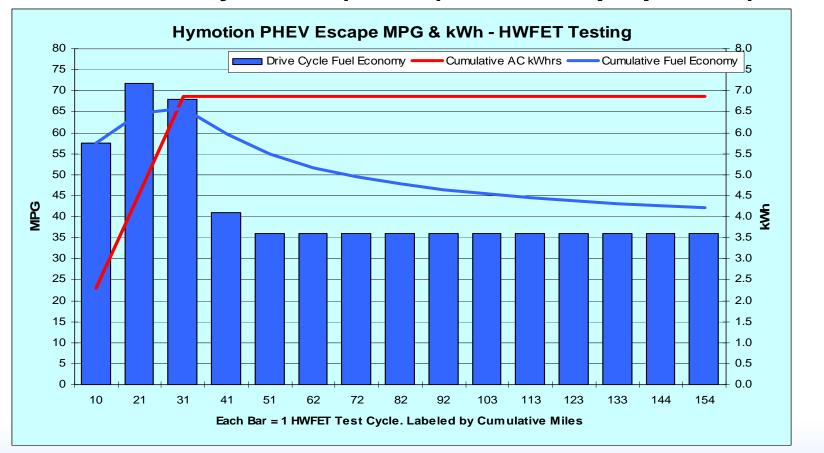


Ford Escape Hybrid with HybridsPlus PHEV conversion – EPA Highway Test


• 10 kWh A123Systems (Li-ion)

Ford Escape Hybrid with Hymotion PHEV conversion – EPA City Test

• 8.5 kWh A123Systems (Li-ion) and Escape packs (NiMH)



Ford Escape Hybrid with Hymotion PHEV conversion – EPA Highway Test

• 8.5 kWh A123Systems (Li-ion) and Escape packs (NiMH)

Hymotion Escape – Accelerated Testing

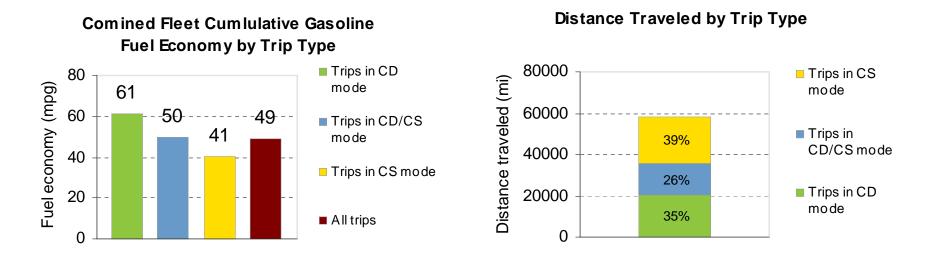
Cycle	Urban	Highway	Charge	Reps	Total	Electricity	Gaso	line
(mi)	(10 mi)	(10 mi)	(hr)	(N)	(mi)	AC kWh	Gals	MPG
10	1	0	4	60	600	Testing		
20	1	1	8	30	600	163.29	13.51	45.7
40	4	0	12	15	600	57.51	14.91	41.1
40	2	2	12	15	600	76.29	15.99	38.7
40	0	4	12	15	600	114.14	11.92	51.5
60	2	4	12	10	600	97.18	13.70	45.3
80	2	6	12	8	640	77.69	16.05	41.3
100	2	8	12	6	600	58.64	15.69	39.8
200	2	18	12	3	600	26.09	17.72	33.5
Total	2340	3100	1344	162	5440	Weighted	Average	

Each total distance slightly greater than 600 miles. HEV version = 27 mpg

PHEVs and Demonstration Locations

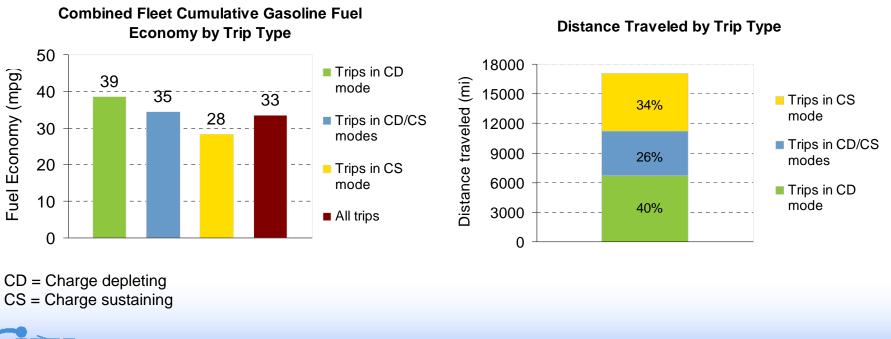
Onroad Demonstration and Data Collection Partners

- ~75 Testing partners in the U.S. and Canada, including:
 - 36 Electric utilities (some via NRECA)
 - 6 City governments
 - 2 County governments
 - 2 State governments
 - 8 Universities and colleges
 - 2 Clean air agencies

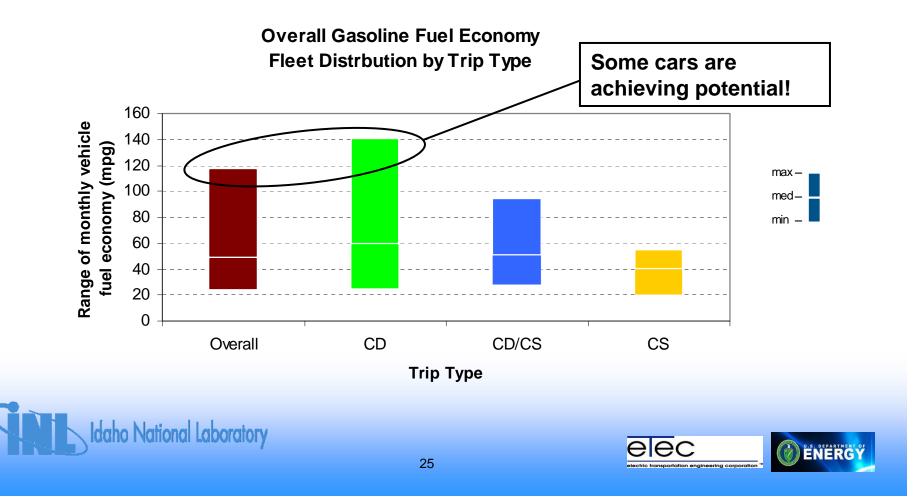

daho National Laboratory

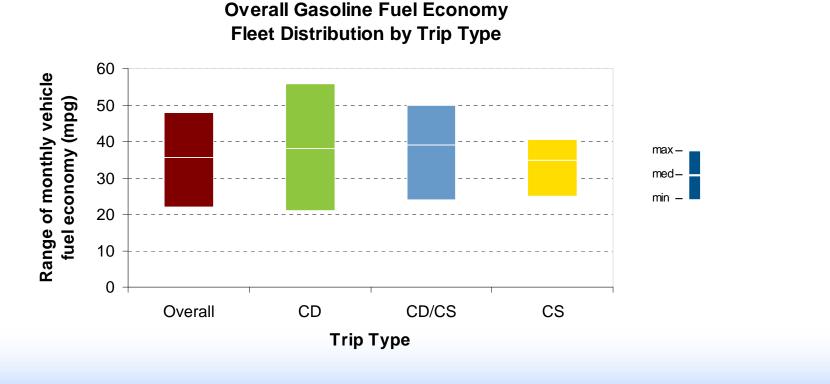
- 7 Private companies and advocacy organizations
- 3 Governments of Canadian provinces
- 2 Sea ports and U.S. military organizations
- 2 PHEV conversion companies

- Data sampled from 28 Hymotion Prius vehicles
- Jan Jun 2008
- 58,005 miles

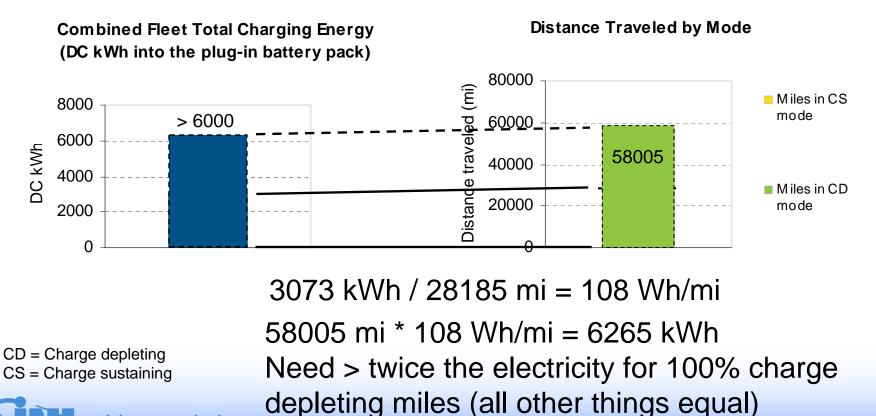


CD = Charge depleting CS = Charge sustaining

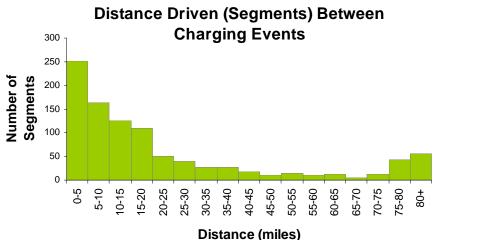

- Data sampled from 4 conversion Escapes
 - 2 HybridsPlus, 2 Hymotion
- Jan Aug 2008: 17,019 miles



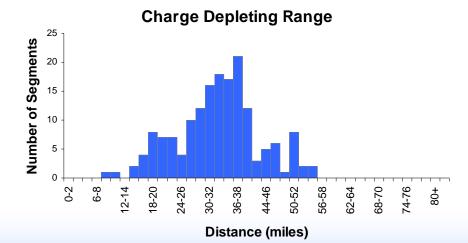
- Same 28 Hymotion Priuses, Jan Jun 2008
- Range of monthly vehicle fuel economy results:


- Same 4 Escapes, Jan Aug 2008
- Range of monthly vehicle fuel economy results:

- Same 28 Hymotion Priuses, Jan Jun 2008
- Charging energy:


- For better gasoline fuel efficiency, use more electricity!
- Battery capacity limited, so plug in more often
- Or put another way:

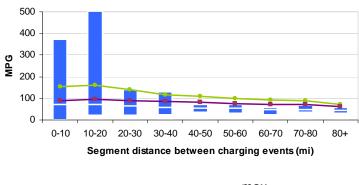
For charge depleting operation, distance driven between charging events must be less than charge depleting range



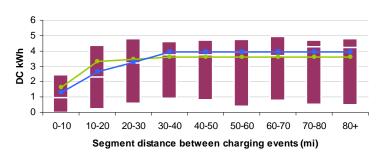
Fleet Distance vs. Range

Hymotion Prius 23 cars Jan – Jul 2008

Same cars, date range


Includes all segments that started with SOC > 95%, ended in CS mode.

CD range is CD distance for each segment.

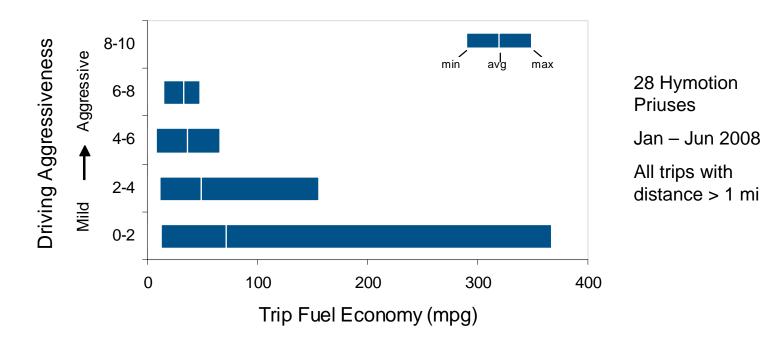

Fleet Fuel and Electricity vs. Segment Distance

MPG vs. Distance Driven Between Charging Events

DC kWh vs. Distance Driven Between Charging Events

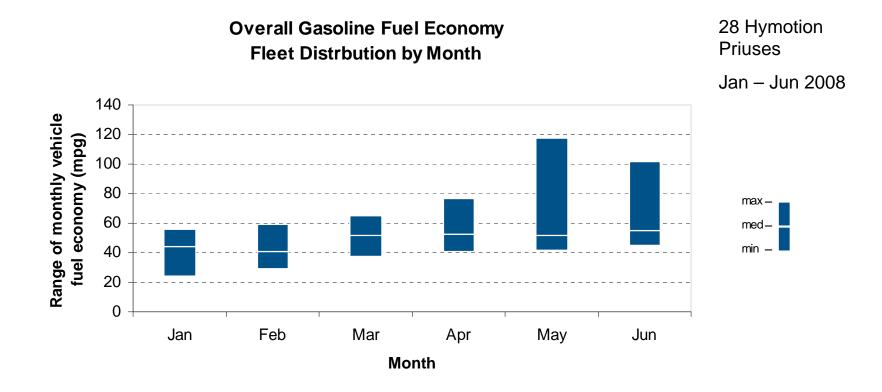
(42 EV-only segments not included)

"Actual Mileage May Vary"


- Even when in charge depleting mode, gasoline fuel efficiency, electrical energy efficiency, and charge depleting range vary widely depending on usage
- Causes of variation
 - Driver aggressiveness
 - Location (city, rural, highway)
 - Temperature
 - Payload
 - Etc.

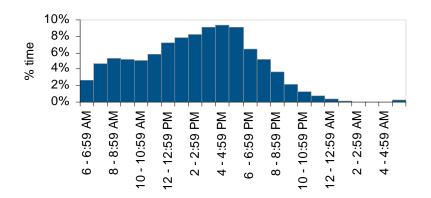
Driver Aggressiveness

Effect of Aggressiveness on Trip Fuel Economy



- Aggressiveness measured by time at accelerator pedal position
- The deeper the pedal, the higher the aggressiveness

Fuel Economy Seasonal Variation


Plug-in Charging Patterns

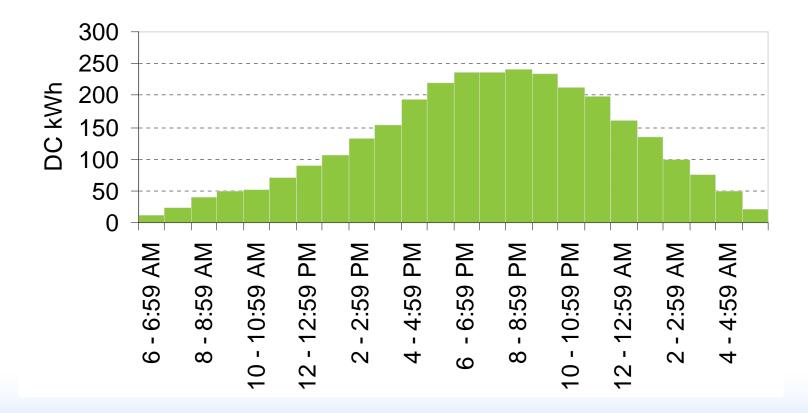
Average number of charging events per vehicle per month	20
Average number of charging events per vehicle per day when vehicle driven	0.7
Average number of trips between charging events	3.9
Average distance driven between charging events (mi)	34.0
Average duration of charging event (hr)	2.4
Average energy per charging event (DC kWh)	1.8
Average charging energy per vehicle per month (DC kWh)	35.3
Idaho National Laboratory 34	electric transportation engineering corporation "

Plug-in Charging Patterns

Idaho National Laboratory

Time of Day When Driving

Time at the Start of Charging Events



elec on engineering corpo

Plug-in Charging Patterns

Energy Consumed vs. Time of Day When Charging

PHEV/EV Impact on Electrical Grid

Basic questions to answer:

- How many PHEVs?
- What kind of PHEVs (energy capacity)?
- Where are they charging?
 - Population density
 - Type of service/circuit
- When are they charging?
- How are they charging (power demand)?

PHEV – Grid Interaction Testing

- Time-of-day charging study (Fall 2008)
 - Conducting charging demonstration with City of Seattle using 13 Seattle area PHEVs
 - Includes INL battery impact analysis
 - Uses V2Green wireless charging control
- Charging infrastructure and facility demand study (started May 2008)
 - Conducting charging demonstration with Tacoma Power to:
 - document charging infrastructure needs
 - determine demand and energy profiles of PHEV charging as portion of facility profiles
 - Using WiFi local energy meter (LEM) data collection system
- Bidirectional vehicle-to-grid (V2G) charging study with electric utilities participating (Fall 2008)
 - 6 kW and 20 kW levels, using two lithium battery PHEVs, V2Green cellular charging control, documenting infrastructure requirements and costs

Acknowledgement

INL/AVTA work is supported by the U.S. Department of Energy's Vehicle Technologies Program Pat Davis, Tien Duong, Lee Slezak and Ro Sullivan

Additional Information

http://avt.inl.gov or http://www1.eere.energy.gov/vehiclesandfuels/avta/

INL/CON-08-14805